A MENU-BASED INTERFACE
FOR EXPERT SYSTEM RULES

James J. Tyhurst
Kerry J. Glover

Hughes Aircraft Company
P.O. Box 902, E4/M156
El Segundo, CA 90245

Presented at:
Expert Systems 88: Solutions in Manufacturing
Detroit, Michigan
April 12-14, 1988

Abstract

The Syntax-driven Menu-based Interfaces for Lex and Yacc grammars
(SMILY) system is a tool for generating menu-based interfaces for context-
free grammars. We present the interface which has been developed for the
HICLASS™ Software System as a sample output of the SMILY interface
generator. This particular interface helps users to write an expert system
rule by prompting them with menus that contain all and only the valid
options at each point in the creation of the rule. Thus, users are constantly
aware of the available options and they are guided in writing a syntactically
correct rule. The SMILY system provides important functional
improvements over previous menu-based systems for context-free natural
language input. SMILY continues to provide menus through all stages of
editing a rule and it can handle an arbitrary LALR(1) context-free
grammar.

A Menu-based Interface for Expert System Rules

WRITING EXPERT SYSTEM RULES

Someone learning to use an expert system shell must learn to write
rules in a very specific format. If the shell offers many different basic data
types, then there will be particular syntactic constructions to manipulate
those data structures. Therefore, the person writing the rules must learn
about the available features and learn how to reference those features
through the given syntax. In practice, we have found that this learning
process is difficult, especially for non-programmers. Even experienced
users tend not to use the full power of the expert system shell, because it is
difficult to remember the entire range of grammatical expressions. Instead,
users tend to rely on familiar rule constructions, even though they may not
be the most efficient for the task at hand.

For example, the HICLASS™ Software System” is an expert system
shell [1], which has been used to develop a variety of manufacturing
applications [2,3,4,5]. It uses a procedural language in which it is easy to
express simple If-Then rules which check variable values and make value
assignments. However, there are also several syntactic constructions for
accessing frames and lists, both of which are basic data types in the
HICLASS system. These constructions are conceptually more difficult,
particularly since most first-time users are not familiar with the notion of
frames, slots, and instances.

In this paper, we present a syntax-driven menu-based editor for
HICLASS rules which addresses the problems of the inexperienced user. It
is syntax-driven, because at each stage of writing a rule, it offers choices
which will lead to a syntactically correct rule. It is menu-based, because
choices are presented to the user on menus. Typing is therefore minimized,
since rules are constructed by using a mouse to make menu selections.
Editing commands such as Save, Abort, and Undo are also chosen by
pointing and clicking with the mouse.

HELPING THE USER TO WRITE RULES

Many of the difficulties encountered by an inexperienced rule writer
are also encountered by someone trying to query a database [6]. An
interesting solution for databases is to use a limited fragment of English as a
query language such that a menu-based interface can be created [7,8]. In the
following sections, we will describe a system which extends this notion of a
menu-based interface to the domain of expert system rules. Although this

* HICL.ASS is a trademark of Hughes Aircraft Company.

-2

A Menu-based Interface for Expert System Rules

system relies on the insights of previous database query systems, the
functional capabilities of the system exceed the abilities of NLMenu as
presented by Tennant. In particular, the Syntax-driven Menu-based
Interfaces for Lex and Yacc grammars (SMILY) system, which is described
below, has more powerful editing capabilities. We first present an
overview of the SMILY system and then compare it to NLMenu.

PROMPT THE RULE WRITER WITH VALID CHOICES - When
inserting text into a rule, SMILY always has a set of active menus which
contain valid options for the current position in the rule. For example,
Figure 1 shows the valid options for the beginning of a rule. Three menus
are active: ‘Rule Type’, ‘Statement’, and ‘{Comment}’. Items are selected
from the menu by using a mouse. Suppose the user chooses ‘ASSERT” from
the ‘Rule Type’ menu. The text window is updated to show the newly
inserted word and the menus are updated to reflect the words which may
begin an Assert rule (see Figure 2). Notice that the ‘Rule Type’ menu is no
longer visible, because there are no entries in that menu which would be
acceptable at this point. The ‘Statement’ menu is still active, but it now
contains many more options which are valid at this new position in the rule.
The rule writer continues making selections until an entire rule has been
constructed.

Some people prefer to type, rather than select items from menus.
Therefore, SMILY offers both options. At any point during the insertion
process, the user may choose to type text manually, rather than making
menu selections. When the ‘Edit’ icon is selected, a new window appears
where text may be entered using the computer system’s text editor. Once
that window is closed, the entire text from that window is inserted at the
current insertion position. If this new text contains syntax errors, the
system stops before the first word which causes an error and displays the
menus of valid options at that point in the rule. If there are no errors in the
new text, then the insertion position moves to the end of the inserted text
and new selection menus are displayed.

When the user has completed entering the rule, selecting the ‘Save’
icon causes the rule to be saved in the knowledge base. The save operation
includes a validity check. If the current rule is not complete (and therefore
is syntactically incorrect), the user is given a warning message and asked to
confirm that the bad rule really should be saved.

text window

gselection window

A Menu-based Interface for Expert System Rules

insert position rule name

€ RULEMANE: ny first rale) _ mode identification

title bar

format options

manual text
insertion option

orT f I ‘,::mw I uxto [HELP
[~ —— -

menus of current row of command icons
insertion items

message bar

Figure 1. The anatomy of the rule editor window.

{ RULENARE: my first rule)
ASSERT 2

IF
EXECUTE .
VISIT -

IF fyy

Figure 2. Rule display after inserting ‘ASSERT".

-4 -

A Menu-based Interface for Expert System Rules

MODIFYING A RULE - Rules may be modified at any stage of
processing. It is possible to call up an existing rule for editing. Or, the user
can change any part of a rule as the rule is being entered for the first time.
Modifications are accomplished through three modes of operation,

Insert Mode - The insertion location is indicated by a cursor in the
body of the text. This can be moved simply by pointing to the desired
location in the text window and clicking the mouse button. Before SMILY
moves the cursor to this new location, it checks the text for syntactic
correctness up to the desired location. If an error is found, the cursor is
place just before the first word that causes the error. This means that the
insertion position can never be moved past a grammatical error. The
selection menus are modified to reflect the options available at the new
insertion position.

Delete Mode - In this mode, the cursor, which indicates the insertion
location, disappears and one or more deletions may be performed. A range
of text is selected by pointing to the beginning of the text, depressing the
mouse button and dragging the selection pointer to the end of the text. The
selected text is shown in reverse video. When the mouse button is released,
the selected text is removed from the rule. It is possible to introduce
syntactic errors into the rule by performing such a deletion. The text is not
checked for syntactic validity until the user changes from Delete mode to
either Insert or Substitute mode. When the user changes out of Delete
moede, the system attempts to place the insertion location at the site of the
last deletion. However, if a syntactic error is detected before that position,
the cursor will be placed just before the first error encountered.

Substitute Mode - A range of text is selected as for the Delete mode.
However, when the mouse button is released and the range of text is deleted,
a new window appears with the deleted text. The user may then modify the
text using the computer system’s text editor. When the user has finished and
closes the edit window, the new text is substituted into the rule at the place
of the original deletion. Substituted text is checked for errors in the same
manner as was described above for manually typed text.

In all three modes of operation (Insert, Delete, and Substitute), an
‘Undo’ icon 1s available to undo previous modifications. The Rule Editor
currently saves the last 32 changes, where each menu selection or deletion
range counts as one change. A substitution counts as multiple changes, one
deletion followed by a separate insertion for each lexical item. Movement
of the insertion position or change of mode does not count as a change with
respect to the Undo function.

A Menu-based Interface for Expert System Rules

This concludes our overview of how the system appears to the user.
In the following section, we discuss the algorithm for generating menus.

DETERMINING VALID MENU ENTRIES - It is necessary to have a
Yacc* generated shift-reduce parser in order to build a SMILY interface.
At each state in the parser, particular lexical categories may be identified as
causing a shift action. This transition information is extracted from the
parser in order to build a look-ahead table for the SMILY interface. For
every state of the parser, the look-ahead table contains a list of lexical
categories which will lead to a valid shift operation. Unfortunately, this list
may not be complete. When shift and reduce actions are both possible in
one state*, the complete list of lexical categories leading to a valid shift
must be determined dynamically at run-time, Therefore, SMILY uses a
run-time “parse-ahead” procedure to supplement the look-ahead table for
those cases.

The parser always starts at the beginning of the rule and is fed tokens
one at a time by the lexical analyzer. The parser moves through a sequence
of states as various shift and reduce operations are performed. When the
insertion position is reached, the lexical analyzer switches to a look-ahead
mode. It uses the current state of the parser as an index into the look-ahead
table to determine which lexical categories will lead to valid transitions.
Menus are created containing the words or entry options that correspond to
those lexical categories. The interface is syntax-driven, because the
contents of the menus are determined directly from the current state of the
parser,

When the user selects one of the menu items, the lexical analyzer
returns that token to the parser. Based on the value of the token, the parser
moves 1o a new state and requests a new token from the lexical analyzer,
New menus are calculated for this new state and the process continues until
the entire rule has been constructed.

Memu choices can be of two types. A fixed string, such as ‘IF’, can be
selected by the user to be directly inserted into the text. A second type of
entry on a menu is a token category name. For example, a menu might

* Yacc (Yet Another Compiler-Compiler) accepts a set of augmented context-free grammar rules as input
and it generates a shift-reduce parser written in the C programming language. Consult the UNIX
Programmer’s Manual [9] for more information about Yace.

** A shift/reduce conflict is a special case of this condition. However, even when no shift/reduce conflict
occurs, a dynamic parse ahead is still required if certain tokens would cause a shift, while others cause a
reduce.

A Menu-based Interface for Expert System Rules

contain an entry labeled ‘Integer’, which further prompts the user to enter
an integer value. The value typed by the user is verified by the lexical
analyzer to make sure that it is a valid sequence of characters for the chosen
token category. In the case of ‘Integer’, typing something other than an
integer, such as ‘3.14°, will result in an error message. Otherwise, the value
typed by the user is inserted into the text at the insertion location.

A single menu may contain entries for more than one lexical
category. For example, there could be a ‘Constants’ menu containing three
category names: ‘Integer’, ‘Real’, and ‘String’. Choosing any one of these
entries will result in a prompt for the user o type an appropriate value for
the chosen category.

A SMILY interface may also be designed to include a special type of
dynamic menu, which is limited to a single lexical category. For example,
the interface for the HICLASS Software System is initialized with an
‘Identifier’ menun, which has a single entry that is labeled ‘<Enter Value>’.
When ‘<Enter Value>’ is chosen from the menu, another prompt pops up
with space for the user to type an identifier. Every time the user enters a
valid identifier through this menu, the new identifier is added as an
additional choice in the menu. The next time that this menu appears, the
user’s last identifier shows up at the top of the accumulated choices, which
are all listed under the original ‘<Enter Value>’ choice.

To summarize, there are two types of menus. One type is restricted
to entries of a single lexical category. However, this type of menu is
dynamic and accumulates values which have been entered by the user.
Another type of menu allows for entries of different lexical categories, but
it cannot add entries dynamically. This type of menu can have two types of
menu entries. The first type of entry is a simple fixed string which is
inserted directly into the text. The second type of entry is a category name
which leads to a pop-up prompt, so that the user can enter a value meeting
the restrictions of that category.

ADVANTAGES OF A MENU-BASED INTERFACE

The SMILY menu-based interface offers several advantages to the
user as compared to a simple text entry interface. Inexperienced and
experienced users both benefit from the presentation of all the available
choices for valid rule construction. The inexperienced user is guided
through the variety of syntactic constructions and, thereby, is taught the
rule grammar. Likewise, the more experienced user is reminded of the full

A Menu-based Interface for Experr System Rules

cxtent of the rule grammar. This tends to prevent a user from relying on a
familiar construction when a more appropriate one is available.*

Proficient rule writers can still benefit from the SMILY editor, even
if they type the rules rather than using the menus. When the typed text is
inserted into the rule, error detection is immediate and the offending token
can easily be compared with the displayed valid choices. This makes the
SMILY interface a valuable rule debugger. Error detection and extended
editing capabilities combine to provide a useful tool for users of all levels.

An advantage which is not apparent to the user is the fact that the
SMILY interface is generated using a parser written with the aid of Yacc
and Lex. These tools are provided by most UNIX™ environments for
constructing parsers.”* Consequently, many applications needing a user
input language specify the language using Yacc and Lex. A SMILY
interface can by created for each user input language written with these
UNIX tools.

THE CURRENT INTERFACE HAS SOME LIMITATIONS

Several limitations exist in the current SMILY interface. First, the
graphics routines that manipulate the menus and icons are all internal to a
software package that only runs on Apollo workstations. This limits the
SMILY editor in its portability. However, the code for managing menus is
contained in a single module that can be replaced by a functional equivalent
which is less machine-dependent. For example, the module could be
rewritten to use the Curses screen handling functions available on UNTX
systems.,

The context-free grammar rules accepted by Yacc do not allow one
to express context-sensitive features in the input language. However, each
rule 1s associated with an action. Therefore, flags and other data structures
can be manipulated in the actions in order to achieve some context-
sensitivity in the resulting parser. The problem is that SMILY currently
ignores the action portion of Yacc rules. This means that it cannot generate
context-sensitive menu selections based on the context checking in the action
portion of those rules. Therefore, SMILY can only handle grammar
specifications which are truly context-free.

* It would be extremely useful (and relatively easy) to link Help files to each menu in order o aid the aser
in choosing between different commands. However, this ability has not beer implemented yet in the
SMILY system.

** UNIX is a trademark of Bell Telephone Laboratories, Inc.

-8-

A Menu-based Interface for Expert System Rules

A final limitation is that a SMILY interface is not fully generated
automatically. Yacc and Lex grammar specifications are not uniform
across applications, since they may contain user-defined functions or global
flags which affect the operation of the resulting parser and lexical analyzer.
This means that some manual intervention is currently necessary to prepare
a Lex/Yacc grammar specification before a SMILY interface is generated.

Even though the generation process is not fully automated, it is
possible to create an entirely new menu-based interface in less than one
working day. For example, it took one person about 6 hours to create the
interface for the HICLASS Software System. The process of generating the
interface mcluded: (1) manual modifications to the Lex and Yacc grammar
specifications; (2) manual generation of a menu table that assigns each
lexical category to the appropriate menu; (3) programmatic generation of a
look-ahead table; and (4) running a shell script to compile and link all of the
required modules. Revisions to the interface are accomplished in
considerably less time, since it is not necessary to completely redo the initial
manual steps.

COMPARING SMILY TO OTHER SYSTEMS

There are many similarities between SMILY and NLMenu (Tennant
1984). However, there are a number of reasons why it was necessary to
develop the additional capabilities of SMILY, rather than using NLMenu
for expert system rules.

NLMenu is a very effective tool for generating database queries.
However, its output consists of single, relatively short commands.
Therefore, it does not contain any editing features other than a rubout key.
This lack of editing capabilities is unacceptable for handling expert system
rules, which may be quite lengthy. Expert system rules are modified
frequently during the initial prototype and development phases of an expert
system. Therefore, an expert system interface must contain an effective
rule editor. SMILY integrates editing capabilities into the menu-based
approach. Therefore, it preserves the benefits of menus, while allowing the
user to deal with a long sequence of text.

Another advantage to SMILY is the ability to integrate it with
existing applications. SMILY is written in C and makes use of Yacc which
is a widely available tool on UNIX operating systems. Before developing
SMILY, we already had a number of parsers written with the help of Yacc
(e.g. parsers for the SQL database query language, engineering notes,
HICLASS rules, and a rule-driven graphics generator). SMILY allows us

-9.

A Menu-based Interface for Expert System Ritles

to use those Yacc grammars directly. This means that a single grammar
specification is maintained for both the menu-based interface and the
parsers (which are also used in non-interactive processing). On the other
hand, if we were to use NLMenu, it would involve a rewrite of existing
grammars and it would probably be necessary to maintain the Yacc and
NLMenu grammars separately.

The class of grammars accepted by the NLMenu system is not
mentioned in the publications that we have seen. SMILY generates
interfaces for the same class of grammars accepted by Yacc, which is
context-free LALR(1) grammars with disambiguating rules.

SUMMARY

SMILY can be used to generate a menu-based interface for an
arbitrary LALR(1) grammar specified in the format required by the UNIX
tool Yacc. A look-ahead table is extracted from the transition information
in the Yacc generated parser. In the Insertion mode, an interface uses the
look-ahead table to produce menus of valid tokens for the current position
in the text. Delete and Substitute modes are also available for editing the
text.

SMILY interfaces include a manual entry option for those users who
prefer to type, rather than use menus. Even when the menus are not used
for text entry, a SMILY interface provides effective feedback to the user. It
checks the typed input and uses the menus to show the valid options that
exist at the location of a syntactic error.

One application of SMILY is a menu-based interface for expert
system rules. This interface helps users to learn the rule syntax while
guiding them to write syntactically well-formed rules. Thus, the interface
satisfies the user’s desire to know when particular constructions are
appropriate. It also satisfies the expert system shell’s requirement that rules
be syntactically correct prior to insertion in the knowledge base.

ACKNOWLEDGMENTS

We would like to thank Jim Cheung and Julie Irvine for their guidance and
suggestions while we were designing the SMILY system. We also appreciate the
constructive criticism that we received from Atul Bajpai and Diane Haig, who commented
on the first draft of this paper.

-10 -

A Menu-based Interface for Expert System Rules

REFERENCES

1] Lam, Dennis L., and Carolyn R. Estes. Expert systems in
manufacturing applications. Ultratech Conference Proceedings (Vol. 1),
Long Beach, California (1986). pp. 2-1 to 2-14.

[2] Liu, David. Intelligent manufacturing planning systems. AUTOFACT
"85 Conference Proceedings Supplement, MS85-1070 (1985).

[3] Liu, David. Expert systems for process Iﬂanning. Computer Aided
Engineering 4, 65-72 (1985).

[4] Tyhurst, James J. Applying linguistic knowledge to engineering notes.
In S. C-Y. Lu and R. Komanduri (eds.), Knowledge-Based Expert Systems
for Manufacturing (PED-Vol. 24). The American Society of Mechanical
Engineers, New York (1986). pp. 131-136.

[5] Zucherman, Mark 1. A knowledge base development for producibility
analysis in mechanical design. Ultratech Conference Proceedings (Vol. 1),
Long Beach, California (1986). pp. 2-15 to 2-36.

[6] Tennant, Harry R. Menu-based natural language understanding. AFIPS
Conference Proceedings, Vol. 53. 1984 National Computer Conference,
Las Vegas, Nevada (1984). pp. 629-635.

[7] Tennant, Harry R., Kenneth M. Ross, and Craig W. Thompson. Usable
natural language interfaces through menu-based natural language
understanding. Proceedings of the Conference on Human Factors in

Computing Systems, Cambridge, MA (1983). pp. 154-160.

[8] Thompson, Craig W., Kenneth M. Ross, Harry R. Tennant, and Richard
M. Saenz. Building usable menu-based natural language interfaces to

databases. Proceedings of the 9th International Conference on Very Large
Databases, Florence, Italy (1983). pp. 43-55.

[9] UNIX Programmer’s Manual (Seventh Edition). Bell Telephone
Laboratories, Incorporated, Murray Hill, N.J. (1979).

-11 -

